Operando Analysis of Electron Devices Using Nanodiamond Thin Films Containing Nitrogen-Vacancy Centers
Author(s) -
Haruki Uchiyama,
Soya Saijo,
Shigeru Kishimoto,
Junko IshiHayase,
Yutaka Ohno
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00344
Subject(s) - materials science , nanodiamond , optoelectronics , diamond , vacancy defect , noise (video) , nanotechnology , computer science , nuclear magnetic resonance , physics , image (mathematics) , artificial intelligence , composite material
Operando analysis of electron devices provides key information regarding their performance enhancement, reliability, thermal management, etc. For versatile operando analysis of devices, the nitrogen-vacancy (NV) centers in diamonds are potentially useful media owing to their excellent sensitivity to multiple physical parameters. However, in single crystal diamond substrates often used for sensing applications, placing NV centers in contiguity with the active channel is difficult. This study proposes an operando analysis method using a nanodiamond thin film that can be directly formed onto various electron devices by a simple solution-based process. The results of noise analysis of luminescence of the NV centers in nanodiamonds show that the signal-to-noise ratio in optically detected magnetic resonance can be drastically improved by excluding the large 1/ f noise of nanodiamonds. Consequently, the magnetic field and increase in temperature caused by the device current could be simultaneously measured in a lithographically fabricated metal microwire as a test device. Moreover, the spatial mapping measurement is demonstrated and shows a similar profile with the numerical calculation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom