z-logo
open-access-imgOpen Access
Iron Phthalocyanine and Ferromagnetic Thin Films: Magnetic Behavior of Single and Double Interfaces
Author(s) -
E. Annese,
Giovanni Di Santo,
Fadi Choueikani,
Edwige Otero,
Philippe Ohresser
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00214
Subject(s) - spintronics , magnetic circular dichroism , phthalocyanine , materials science , ferromagnetism , remanence , magnetic moment , magnetization , x ray magnetic circular dichroism , cobalt , thin film , condensed matter physics , crystallography , nanotechnology , magnetic field , chemistry , metallurgy , physics , quantum mechanics , astronomy , spectral line
Metal-phthalocyanines are quasi-planar heterocyclic macrocycle molecules with a highly conjugated structure. They can be engineered at the molecular scale (central atom, ligand) to tailor new properties for organic spintronics devices. In this study, we evaluated the magnetic behavior of FePc in a ∼1 nm molecular film sandwiched between two ferromagnetic films: cobalt (bottom) and nickel (top). In the single interface, FePc in contact with a Co film is magnetically coupled with the inorganic film magnetization, though the relatively small Fe(Pc) X-ray magnetic circular dichroism (XMCD) signal in remanence, with respect to that observed in applied field of 6 T, suggests that a fraction of molecules in the organometallic film have their magnetic moment not aligned or antiparallel with respect to Co. When in contact with two interfaces, Fe(Pc) XMCD doubles, indicating that part of the Fe(Pc) are now aligned with the Ni topmost layer, saturated at 1 T. We discussed the relevance of the finding in terms of understanding and developing hybrid organic/inorganic spin devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom