New Set of Multicomponent Crystals as Efficient Heterogeneous Catalysts for the Synthesis of Cyclic Carbonates
Author(s) -
Arunangshu Kundu,
Swagata Saikia,
Manoj Majumder,
O. Sengupta,
Biswajit Bhattacharya,
Gobinda Chandra De,
Sushobhan Ghosh
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00101
Subject(s) - catalysis , set (abstract data type) , materials science , chemistry , chemical engineering , combinatorial chemistry , computer science , organic chemistry , engineering , programming language
Three new multicomponent crystals 1a-1c of Zn(II), Mn(II), and Co(II), respectively, were synthesized by the reaction of 2,6-bis(hydroxymethyl)pyridine, the respective metal salts, and sodium benzoate in a 1:1:2 ratio. One component of these multicomponent crystals 1a-1c is the dicationic 2,6-bis(hydroxymethyl)pyridine metal complex and the other component is the dianionic tetrabenzoate complex of the same metal. The complexes were fully characterized by single-crystal X-ray structure determination. The X-ray structure of these compounds 1a-1c reveals the formation of 1D supramolecular chain parallel to the crystallographic b axis via H-bonding interactions between the dicationic and dianionic parts of the respective compound. The Mn(II) ( 1b ) and Co(II) ( 1c ) complexes show antiferromagnetic coupling between the two associated metal centers via the H-bonding interaction pathway. All the three compounds 1a-1c were tested as heterogeneous catalytic systems for the successful conversion of epoxides to cyclic carbonates in solvent-free condition under approximately 10 bar of pressure of CO 2 and temperature ranging between 60 and 80 °C along with tetrabutyl ammonium bromide acting as a cocatalyst. All the three compounds 1a-1c were found to have turnover number more than 1000 for the respective epoxides except for the conversion of cyclohexene oxide to cyclohexene carbonate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom