z-logo
open-access-imgOpen Access
Designing Rosin-Based Plasticizers: Effect of Differently Branched Chains on Plasticization Performance and Solvent Resistance of Flexible Poly(vinyl chloride) Films
Author(s) -
Puyou Jia,
Yufeng Ma,
Meng Zhang,
Lihong Hu,
Yonghong Zhou
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03612
Subject(s) - plasticizer , rosin , phthalate , vinyl chloride , solvent , materials science , organic chemistry , polymer chemistry , chemistry , copolymer , polymer , resin acid
In the present study, we report a strategy to prepare rosin-based plasticizers with differently branched chains, which have the same benzene ring and similar alkane structure compared to phthalate plasticizers. Castor oil methyl ester, cardanol, and triethyl citrate were reacted with the chemical structure of rosin-based plasticizers. Rosin-based plasticizers with differently branched chains as alternative plasticizers for preparing phthalate-free flexible poly(vinyl chloride) films. All rosin-based plasticizers exhibited more excellent solvent extraction performance than phthalate plasticizers in four different solvents. The plasticizing efficiency of rosin-based plasticizers containing triethyl citrate groups reached 85.5%. The relationships between plasticizing efficiency, thermal stability, solvent resistance, tensile properties, and relative molecular mass of the branched chains of rosin-based plasticizers were investigated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom