Luminescent Sodium Deoxycholate Ionogel Induced by Eu3+ in Ethylammonium Nitrate
Author(s) -
Xueyuan Li,
Qintang Li,
Nana Lei,
Xiao Chen
Publication year - 2019
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03555
Subject(s) - lanthanide , ionic liquid , europium , self healing hydrogels , luminescence , fourier transform infrared spectroscopy , chemistry , inorganic chemistry , fluorescence spectroscopy , materials science , chemical engineering , fluorescence , ion , polymer chemistry , organic chemistry , catalysis , physics , optoelectronics , quantum mechanics , engineering
Hydrogels based on bile salts and lanthanide ions have been reported for their easy gelation. However, the weak mechanical properties and water quenching to luminescence of lanthanide ions limit their applications in practice. Hence, a supramolecular ionogel has been prepared here through simply mixing of sodium deoxycholate and europium nitrate in a protic ionic liquid, ethylammonium nitrate (EAN). The prepared ionogel was characterized by scanning electron microscopy, X-ray energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and rheological measurements. Such an ionogel resulted synergistically from metal coordination and hydrogen bonding. The effect of the solvent structure on gel properties was also explored by comparison with those formed in alkylammonium nitrates with longer chains. EAN was found to behave more effectively both as a solvent and a bridge to enhance the ionogel mechanical strength. The ionogels also exhibited better fluorescent properties than those of the corresponding hydrogels. The obtained results should expand the applications of lanthanide-containing luminescent soft materials in nonaqueous media. It is expected to apply in the fields of solid electrolytes, biosensors, and optics response.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom