Driving Force of the Pyranoside-into-Furanoside Rearrangement
Author(s) -
Alexey G. Gerbst,
Vadim B. Krylov,
Dmitry A. Argunov,
Andrey S. Dmitrenok,
Nikolay E. Nifantiev
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03274
Subject(s) - monosaccharide , chemistry , mannose , arabinose , galactose , xylose , ab initio , fucose , stereochemistry , furanose , computational chemistry , ring (chemistry) , organic chemistry , fermentation
Ab initio calculations of fully O-sulfated model monosaccharides, including common hexoses (glucose, galactose, fucose, and mannose) and pentoses (arabinose and xylose), were performed to study the energetic properties of the recently discovered pyranoside-into-furanoside (PIF) rearrangement. It was shown that the per-O-sulfated derivatives of furanoside isomers generally had lower energies than the corresponding per-O-sulfated pyranosides, while nonsulfated furanosides were always less favored than nonsulfated pyranosides. Mannose, which is known to be unreactive in PIF rearrangement, was the only exception. The results of the theoretical calculations were confirmed by experimental studies of monosaccharide models and explained the driving force of such unusual ring contraction process as PIF rearrangement. The conclusions of performed investigation can be used for prediction of new substrates applicability for PIF rearrangement.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom