z-logo
open-access-imgOpen Access
Water Splitting Reaction at Polar Lithium Niobate Surfaces
Author(s) -
Christof Dues,
W. G. Schmidt,
Simone Sanna
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03271
Subject(s) - overpotential , oxygen evolution , water splitting , catalysis , chemistry , aqueous solution , polarization (electrochemistry) , hydrogen , hydrogen production , electrochemistry , inorganic chemistry , materials science , chemical physics , photocatalysis , electrode , organic chemistry
Water splitting is a highly promising, environmentally friendly approach for hydrogen production. It is often discussed in the context of carbon dioxide free combustion and storage of electrical energy after conversion to chemical energy. Since the oxidation and reduction reactions are related to significant overpotentials, the search for suitable catalysts is of particular importance. Ferroelectric materials, for example, lithium niobate, attracted considerable interest in this respect. Indeed, the presence of surfaces with different polarizations and chemistries leads to spatial separation of reduction and oxidation reactions, which are expected to be boosted by the electrons and holes available at the positive and negative surfaces, respectively. Employing the density functional theory and a simplified thermodynamic approach, we estimate the overpotentials related to the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) on both polar LiNbO 3 (0001) surfaces. Our calculations performed for ideal surfaces in vacuum predict the lowest overpotential for the hydrogen evolution reaction (0.4 V) and for the oxygen evolution reaction (1.2 V) at the positive and at the negative surfaces, respectively, which are lower than (or comparable with) commonly employed catalysts. However, calculations performed to model the aqueous solution in which the reactions occur reveal that the presence of water substantially increases the required overpotential for the HER, even inverting the favorable polarization direction for oxidation and reduction reactions. In aqueous solution, we predict an overpotential of 1.2 V for the HER at the negative surface and 1.1 V for the OER at the positive surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom