z-logo
open-access-imgOpen Access
Refinement of the OPLSAA Force-Field for Liquid Alcohols
Author(s) -
Ronen Zangi
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03132
Subject(s) - force field (fiction) , field (mathematics) , computer science , mathematics , artificial intelligence , pure mathematics
We employ the popular all-atom optimized potential for liquid simulations, OPLSAA, force-field to model 17 different alcohols in the liquid state. Using the standard simulation protocol for few hundred nanosecond time periods, we find that 1-octanol, 1-nonanol, and 1-decanol undergo spontaneous transition to a crystalline state at temperatures which are 35-55 K higher than the experimental melting temperatures. Nevertheless, the crystal structures obtained from the simulations are very similar to those determined by X-ray powder diffraction data for several n -alcohols. Although some degree of deviations from the experimental freezing points are to be expected, for 1-nonanol and 1-decanol, the elevation of the freezing temperature warrants special attention because at room temperature, these alcohols are liquids; however, if simulated by the OPLSAA force-field, they will crystallize. This behavior is likely a consequence of exaggerated attractive interactions between the alkane chains of the alcohols. To circumvent this problem, we combined the OPLSAA model with the L-OPLS force-field. We adopted the L-OPLS parameters to model the hydrocarbon tail of the alcohols, whereas the hydroxyl head group remained as in the original OPLSAA force-field. The resulting alcohols stayed in the liquid state at temperatures above their experimental melting points, thus, resolving the enhanced freezing observed with the OPLSAA force-field. In fact, the mixed-model alcohols did not exhibit any spontaneous freezing even at temperatures much lower than the experimental values. However, a series of simulations in which these mixed-OPLSAA alcohols started from a coexistence configuration of the liquid and solid phases resulted in freezing transitions at temperatures 14-25 K lower than the experimental values, confirming the validity of the proposed model. For all of the other alcohols, the mixed model yields results very similar to the OPLSAA force-field and is in good agreement with the experimental data. Thus, for simulating alcohols in the liquid phase, the mixed-OPLSAA model is necessary for large (7 carbons and above) hydrocarbon chains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom