Structural Modeling and in Silico Screening of Potential Small-Molecule Allosteric Agonists of a Glucagon-like Peptide 1 Receptor
Author(s) -
Tejashree Redij,
Rajan Chaudhari,
Zhiyu Li,
Xianxin Hua,
Zhijun Li
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03052
Subject(s) - allosteric regulation , in silico , small molecule , g protein coupled receptor , chemistry , allosteric modulator , drug discovery , receptor , peptide , computational biology , transmembrane domain , incretin , homology modeling , pharmacology , biochemistry , biology , enzyme , type 2 diabetes , gene , endocrinology , diabetes mellitus
The glucagon-like peptide 1 receptor (GLP-1R) belongs to the pharmaceutically important class B family of G-protein-coupled receptors (GPCRs), and its incretin peptide ligand GLP-1 analogs are adopted drugs for the treatment of type 2 diabetes. Despite remarkable antidiabetic effects, GLP-1 peptide-based drugs are limited by the need of injection. On the other hand, developing nonpeptidic small-molecule drugs targeting GLP-1R remains elusive. Here, we first constructed a three-dimensional structure model of the transmembrane (TM) domain of human GLP-1R using homology modeling and conformational sampling techniques. Next, a potential allosteric binding site on the TM domain was predicted computationally. In silico screening of druglike compounds against this predicted allosteric site has identified nine compounds as potential GLP-1R agonists. The independent agonistic activity of two compounds was subsequently confirmed using a cAMP response element-based luciferase reporting system. One compound was also shown to stimulate insulin secretion through in vitro assay. In addition, this compound synergized with GLP-1 to activate human GLP-1R. These results demonstrated that allosteric regulation potentially exists in GLP-1R and can be exploited for developing small-molecule agonists. The success of this work will help pave the way for small-molecule drug discovery targeting other class B GPCRs through allosteric regulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom