z-logo
open-access-imgOpen Access
Encapsulation of Long Genomic DNA into a Confinement of a Polyelectrolyte Microcapsule: A Single-Molecule Insight
Author(s) -
Anatoly Zinchenko,
Eisuke Inagaki,
Shizuaki Murata
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02865
Subject(s) - encapsulation (networking) , dna , polyelectrolyte , nanotechnology , nucleic acid , molecule , materials science , biophysics , chemistry , chemical engineering , polymer , biochemistry , biology , organic chemistry , computer network , computer science , engineering
Encapsulation of nucleic acids is an important technology in gene delivery, construction of "artificial cells", genome protection, and other fields. However, although there have been a number of protocols reported for encapsulation of short or oligomeric DNAs, encapsulation of genome-sized DNA containing hundreds of kilobase pairs is challenging because the length of such DNA is much longer compared to the size of a typical microcapsule. Here, we report a protocol for encapsulation of a ca. 60 μm contour length DNA into several micrometer-sized polyelectrolyte capsules. The encapsulation was carried out by (1) compaction of T4 DNA with multivalent cations, (2) entrapment of DNA condensates into micrometer-sized CaCO 3 beads, (3) assembly of polyelectrolyte multilayers on a bead surface, and (4) dissolution of beads resulting in DNA unfolding and release. Fluorescence microscopy was used to monitor the process of long DNA encapsulation at the level of single-DNA molecules. The differences between long and short DNA encapsulation processes and morphologies of products are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom