Highly Efficient Rubber-to-Stainless Steel Bonding by Nanometer-Thin Cross-linked Polymer Brushes
Author(s) -
Kristian Birk Buhl,
Rasmus Krag Møller,
Simon Heide-Jørgensen,
Andreas Nygaard Kolding,
Mikkel Kongsfelt,
Michal K. Budzik,
Mogens Hinge,
Steen Uttrup Pedersen,
Kim Daasbjerg
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02312
Subject(s) - nanometre , natural rubber , materials science , polymer , composite material , polymer science
Stainless steel (SS) surfaces were grafted with poly(glycidyl methacrylate) (PGMA) brushes that were post-modified using allylamine, diallylamine, and propylamine as reagents. Likewise, poly[2-(diethylamino)ethyl methacrylate] brushes were synthesized. All samples were compression molded with uncured ethylene-propylene-diene M-class rubber and dicumyl peroxide and vulcanized for 12 min at 170 °C. The efficiency of the novel bonding solution was evaluated through peel experiments. Two parameters, the fracture toughness () and the cohesive-to-adhesive fracture ratio ( A r ), were calculated to evaluate the strength and the performance of the coupling, respectively. For the nanometer-thin PGMA films modified with allylamine, in particular, full cohesive fracture was obtained. The obtained values of (15.4 ± 1.1 N mm -1 ) and A r (1.00 ± 0.01) matched those obtained for a micrometer-thick commercial bonding agent. Cross-linking of polymer brushes by intermolecular reactions by the primary amines proved to have a significant impact on the type of fracture (cohesive/adhesive) and the performance of the adhesives.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom