z-logo
open-access-imgOpen Access
Development of a Multiplex Glycan Microarray Assay and Comparative Analysis of Human Serum Anti-Glycan IgA, IgG, and IgM Repertoires
Author(s) -
Sarah V. Durbin,
W. Shea Wright,
Jeffrey C. Gildersleeve
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02238
Subject(s) - glycan , multiplex , antibody , microarray , biology , immune system , immunology , immunoglobulin g , antigen , glycome , autoimmunity , microarray analysis techniques , computational biology , gene , microbiology and biotechnology , gene expression , glycoprotein , genetics
Serum antibodies that recognize carbohydrate antigens play a fundamental role in immune defense, homeostasis, and autoimmunity. In addition, they serve as potential biomarkers for a variety of medical applications. For most anti-glycan antibodies found in human serum, however, the origins, regulation, and biological significance are not well understood. Antibody subpopulations that are relevant to a particular biological process or disease are often difficult to identify from the myriad of anti-glycan antibodies present in human serum. While prior studies have examined anti-glycan IgG and/or IgM repertoires, little is known about IgA repertoires or how IgA, IgG, and IgM are related. In this study, we describe the development of a multiplex assay to simultaneously detect IgA, IgG, and IgM on a glycan microarray and its application to studying anti-glycan repertoires in healthy subjects. The multiplex glycan microarray assay revealed unique insights and systems-level relationships that would be difficult to uncover using traditional approaches. In particular, we found that anti-glycan IgA, IgG, and IgM expression levels appear to be tightly regulated, coordinated within individuals, and stable over time. Additionally, our results help define natural fluctuations over time, which is critical for identifying changes that are beyond normal biological variation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom