z-logo
open-access-imgOpen Access
Influence of Postsynthesis Heat Treatment on Vapor-Phase-Polymerized Conductive Polymers
Author(s) -
Kamil Zuber,
Henry Shere,
Junaiz Rehmen,
Vivienne C. Wheaton,
Manrico Fabretto,
Peter Murphy,
Drew Evans
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02191
Subject(s) - materials science , polymerization , pedot:pss , polymer , polypyrrole , conductive polymer , chemical engineering , electrochromism , polymer chemistry , monomer , composite material , chemistry , electrode , engineering
The effect of thermal treatment on the structure and electrical/optical properties of vapor phase-polymerized poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) and polypyrrole:tosylate (PPy:Tos) polymer films was investigated. Thermal treatment was applied postpolymerization but prior to washing the embedded oxidant layer out of the polymer film. Structural and chemical changes arising from the treatment were studied in the context of their conductive and electrochromic behavior. Spectroscopic analysis indicated a rise in the doping levels of both conductive polymers when exposed to thermal treatment. Additionally, an increase in the film thickness was recorded after the oxidant and other unbound species were removed from the polymer layer using an ethanol rinse. As such, a strong indication that polymerization continued even in the absence of (external) monomer vapor was present. This film thickness increase was most pronounced for PPy:Tos but also present in the PEDOT:Tos film. Heat-treated films exhibited enhanced cohesion, making them more robust and therefore increasing the viability for the material to be used in the optoelectronics area. This robustness, due to additional (cross-linking) oligomer growth, came at the expense of lower conductivity relative to their untreated counterparts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom