Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches
Author(s) -
Fei Wu,
Ping Yu,
Lanqun Mao
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02055
Subject(s) - neurochemistry , neuroscience , neural activity , neuroimaging , computer science , neurology , psychology
Quantitative monitoring of brain neurochemistry is aimed at an accurate measurement of chemical basal levels and dynamics defining neuronal activities. Analytical tools must be endowed with high selectivity, sensitivity, and spatiotemporal resolution to tackle this task. On one hand, in vivo electroanalysis combined with miniature electrodes has evolved into a minimally invasive method for probing transient events during neural communication and metabolism. On the other hand, noninvasive imaging techniques have been widely adopted in visualizing the neural structure and processes within a population of neurons in two or three dimensions. This perspective will give a concise review of the inspiring frontiers at the interface of neurochemistry and electrochemistry (microvoltammetry, nanoamperometry, galvanic redox potentiometry and ion transport-based sensing) or imaging (super-resolution single nanotube tracking, deep multiphoton microscopy, and free animal imaging). Potential opportunities with these methods and their combinations for multimodal brain analysis will be discussed, intending to draw a brief picture for future neuroscience research.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom