z-logo
open-access-imgOpen Access
Self-Assembled Polyvinyl Alcohol–Tannic Acid Hydrogels with Diverse Microstructures and Good Mechanical Properties
Author(s) -
Yanan Chen,
Chen Jiao,
Yaxin Zhao,
Jianan Zhang,
Huiliang Wang
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02041
Subject(s) - self healing hydrogels , polyvinyl alcohol , materials science , tannic acid , chemical engineering , microstructure , polymer , ultimate tensile strength , vinyl alcohol , aqueous solution , porosity , crystallization , elastic modulus , polymer chemistry , composite material , chemistry , organic chemistry , engineering
Fabrication of hydrogels with unique microstructures and better mechanical properties through the self-assembly of commercially available synthetic polymers and small molecules is of great scientific and practical importance. A type of physical hydrogels is prepared by the self-assembly of polyvinyl alcohol (PVA) and tannic acid (TA) in aqueous solution with a low PVA-TA concentration (0.5-6.0 wt %) at room temperature. With the increase of the PVA-TA concentration, the water content of the hydrogels increases, and the content of TA in the hydrogels decreases from 23.1 to 6.4%. The driving force for the self-assembly is proven to be the hydrogen bonding between PVA and TA, which also induces the crystallization of PVA chains. The self-assembled PVA-TA hydrogels have diverse morphologies that change from microspheres to oriented porous structures with the increase of the PVA-TA concentration, and these structures are all composed of nanosized particles, fibers, and/or sheets. Most of the self-assembled PVA-TA hydrogels show good mechanical properties. The highest tensile strength and elastic modulus of the PVA-TA hydrogel prepared with 1.0 wt % PVA-TA concentration are about 84 and 30 kPa, respectively. This self-assembly method would lead to the fabrication of more hydrogels with unique microstructures and properties for practical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom