Study of the Interaction of Anthocyanins with Phenolic Aldehydes in a Model Wine Solution
Author(s) -
Carlos Escott,
António Morata,
Fernando Zamora,
Iris Loira,
Juan Manuel del Fresno,
José Antonio Suárez-Lepe
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01828
Subject(s) - wine , chemistry , vanillin , pigment , acetaldehyde , anthocyanin , proanthocyanidin , wine color , food science , furfural , aging of wine , aldehyde , organic chemistry , polyphenol , ethanol , antioxidant , catalysis
Aldehydes may be present in wines as a result of metabolic processes during wine fermentation or through oxidation and extraction from wood during wine aging in oak barrels. Apart from acetaldehyde, the most abundant aldehyde in wine, other aldehydes such as furfural and more recently vanillin have shown to contribute to the formation of more stable pigments. The copigmentation effect of phenolic molecules, including flavanols and anthocyanins themselves, has been previously evaluated in wine and model solutions, and even the effect of aldehydes related to wine aging has been documented at different pHs and molar ratios. The copigmentation phenomenon is observed by hyperchromic effects and bathochromic shifts of λ max , and, in the same time, the presence of larger molecular weight pigments, potentially less susceptible to degradation, was followed up. This experimental work intended to evaluate the potential of five different aldehydes, all of which are safe for human consumption and are used in the food industry, to the formation of pyranoanthocyanin-like and polymeric pigments in the model solution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom