Gas-Phase Stereoinversion in Aspartic Acid: Reaction Pathways, Computational Spectroscopic Analysis, and Its Astrophysical Relevance
Author(s) -
Ramanpreet Kaur,
Namrata Rani,
Vikas Vikas
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01721
Subject(s) - chemistry , strecker amino acid synthesis , excited state , computational chemistry , imine , stereochemistry , physics , organic chemistry , atomic physics , enantioselective synthesis , catalysis
Noncatalytic reaction pathways for the gas-phase stereoinversion in aspartic acid are mapped employing a global reaction route mapping strategy using quantum mechanical computations. The species including the transition states (TSs) traced along the stereoinversion pathways are characterized using rotational and vibrational computational spectroscopic analysis while accounting for the vibrational corrections to rotational constants and anharmonic effects. Notably, the TS structures traced along the stereochemical pathways resemble the achiral ammonium ylide and imine intermediates as observed in the Strecker synthesis of chiral amino acids. A few of the probable stereoinversion pathways proposed proceed through the proton or hydrogen atom transfer. The feasibility of the pathways under conditions akin to interstellar medium (ISM) is further discussed in terms of natural bond orbital analysis. The stereoinversion pathways proposed in this work may proceed via photoirradiation in the ISM, which though can be revealed by exploring the excited-state potential energy surface. In this context, the spectroscopic data generated in this work can provide valuable assistance toward the astrophysical detection of chiral molecules in outer space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom