z-logo
open-access-imgOpen Access
Aggregation-Induced Emission and White Luminescence from a Combination of π-Conjugated Donor–Acceptor Organic Luminogens
Author(s) -
Paramita Das,
Atul Kumar,
Aniket Chowdhury,
Partha Sarathi Mukherjee
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01706
Subject(s) - conjugated system , luminescence , photochemistry , acceptor , chemistry , materials science , optoelectronics , polymer , organic chemistry , physics , condensed matter physics
Two new star-shaped phenyl- and triazine-core based donor-acceptor (D-A) type conjugated molecules bearing triphenylamine end-capped arms were synthesized and characterized as imminent organic optoelectronic materials. Photophysical properties of the compounds were explored systematically via spectroscopic and theoretical methods. Because of the presence of donor-acceptor interactions, these luminogens display multifunctional properties, for instance, high extinction coefficient, large stokes shift, and pronounced solvatochromic effect. The compounds also exhibited phenomenon known as aggregation-induced emission on formation of nano-aggregates in the tetrahydrofuran-water mixture. The aggregate formation was confirmed by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses. Moreover, by controlling the electron withdrawing ability of the acceptor, complementary emissive fluorophores (blue and yellow) were achieved. These two complementary colors together span the entire range of visible spectrum (400-800 nm) and therefore when mixed in a requisite proportion generate white light in solution phase. These findings have potential for the progress of new organic white light radiating materials for applications in lighting and display devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom