z-logo
open-access-imgOpen Access
In Situ Immobilized Sesamol-Quinone/Carbon Nanoblack-Based Electrochemical Redox Platform for Efficient Bioelectrocatalytic and Immunosensor Applications
Author(s) -
Mansi Gandhi,
Rajagopal Desikan,
Sampath Parthasarathy,
R. Sudhakaran,
ShengTung Huang,
Annamalai Senthil Kumar
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01296
Subject(s) - sesamol , redox , electrochemistry , quinone , in situ , chemistry , combinatorial chemistry , nanotechnology , materials science , electrode , inorganic chemistry , biochemistry , organic chemistry , antioxidant
Most of the common redox mediators such as organic dyes and cyanide ligand-associated metal complex systems that have been used for various electrochemical applications are hazardous nature. Sesamol, a vital nutrient that exists in natural products like sesame seeds and oil, shows several therapeutic benefits including anticancer, antidiabetic, cardiovascular protective properties, etc. Herein, we introduce a new electrochemical redox platform based on a sesamol derivative, sesamol-quinone (Ses-Qn; oxidized sesamol), prepared by the in situ electrochemical oxidation method on a carbon nanoblack chemically modified glassy carbon electrode surface (GCE/CB@Ses-Qn) in pH 7 phosphate buffer solution, for nontoxic and sustainable electrochemical, electroanalytical, and bioelectroanalytical applications. The new Ses-Qn-modified electrode showed a well-defined redox peak at E o = 0.1 V vs Ag/AgCl without any surface-fouling behavior. Following three representative applications were demonstrated with this new redox system: (i) simple and quick estimation of sesamol content in the natural herbal products by electrochemical oxidation on GCE/CB followed by analyzing the oxidation current signal. (ii) Utilization of the GCE/CB@Ses-Qn as a transducer, bioelectrocatalytic reduction, and sensing of H 2 O 2 after absorbing the horseradish peroxidase (HRP)-based enzymatic system on the underlying surface. The biosensor showed a highly selective H 2 O 2 signal with current sensitivity and detection limit values 0.1303 μA μM -1 and 990 nM, respectively, with tolerable interference from the common biochemicals like dissolved oxygen, cysteine, ascorbic acid, glucose, xanthine, hypoxanthine, uric acid, and hydrazine. (iii) Electrochemical immunosensing of white spot syndrome virus by sequentially modifying primary antibody, antigen, secondary antibody (HRP-linked), and bovine serum albumin on the redox electrode, followed by selective bioelectrochemical detection of H 2 O 2 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom