Rationalizing the Formation of Activity Cliffs in Different Compound Data Sets
Author(s) -
Huabin Hu,
Dagmar Stumpfe,
Jürgen Bajorath
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01188
Subject(s) - cliff , potency , set (abstract data type) , basis (linear algebra) , scale (ratio) , statistical analysis , chemistry , computer science , mathematics , geography , statistics , cartography , archaeology , biochemistry , geometry , in vitro , programming language
Activity cliffs are formed by structurally analogous compounds with large potency variations and are highly relevant for the exploration of discontinuous structure-activity relationships and compound optimization. So far, activity cliffs have mostly been studied on a case-by-case basis or assessed by global statistical analysis. Different from previous investigations, we report a large-scale analysis of activity cliff formation with a strong focus on individual compound activity classes (target sets). Compound potency distributions were systematically analyzed and categorized, and structural relationships were dissected and visualized on a per-set basis. Our study uncovered target set-dependent interplay of potency distributions and structural relationships and revealed the presence of activity cliffs and origins of cliff formation in different structure-activity relationship environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom