Unusual Nucleophilic Addition of Grignard Reagents in the Synthesis of 4-Amino-pyrimidines
Author(s) -
Ryan Tinson,
David L. Hughes,
Leanne M. Ward,
G. R. Stephenson
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01137
Subject(s) - chemistry , reagent , pyrimidine , substituent , nucleophile , nitrile , grignard reagent , grignard reaction , quenching (fluorescence) , nucleophilic addition , combinatorial chemistry , organic chemistry , stereochemistry , catalysis , physics , quantum mechanics , fluorescence
Pyrimidines have always received considerable attention because of their importance in synthesis and elucidation of biochemical roles, in particular that of vitamin B1. Herein, we describe a reaction pathway in a Grignard reagent-based synthesis of substituted pyrimidines. A general synthesis of α-keto-2-methyl-4-amino pyrimidines and their C6-substituted analogues from 4-amino-5-cyano-2-methylpyrimidine is reported. The presence of the nitrile substituent in the starting material also results in an unusual reaction pathway leading to C6-substituted 1,2-dihydropyrimidines. Grignard reagents that give normal pyrimidine products under standard reaction conditions can be switched to give dihydropyrimidines by holding the reaction at 0 °C before quenching.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom