Effects of Particle Size on Voltage Fade for Li-Rich Mn-Based Layered Oxides
Author(s) -
Yuxuan Zuo,
Jin Ma,
Ning Jiang,
Dingguo Xia
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01090
Subject(s) - fade , materials science , spinel , electrochemistry , voltage , electrode , cathode , particle size , ion , particle (ecology) , chemical engineering , nanotechnology , optoelectronics , metallurgy , computer science , electrical engineering , chemistry , oceanography , organic chemistry , geology , engineering , operating system
Voltage fade significantly hinders the practical use of Li-rich Mn-based layered oxides (LLOs) as cathode materials for next-generation high-energy-density Li-ion batteries. Therefore, an in-depth understanding of the factors influencing the LLO voltage fade during cycling is fundamentally important for tailoring the structure and thus improving the electrochemical performance of the corresponding electrodes. Herein, we compare the electrochemical performances of LLOs with different particle size and conduct in situ high-pressure response measurements to determine the effects of particle size on voltage fade, demonstrating that small particles can undergo a reversible layer-to-spinel phase transition that results in improved voltage stability during cycling. The above finding provides a novel paradigm for the development of high-capacity LLO electrodes and thus contributes to the establishment of a more energy-efficient and green society.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom