Altering Nitrogen Heterocycles of AZD2461 Affords High Affinity Poly(ADP-ribose) Polymerase-1 Inhibitors with Decreased P-Glycoprotein Interactions
Author(s) -
Sean W. Reilly,
Laura N. Puentes,
ChiaJu Hsieh,
Mehran Makvandi,
Robert H. Mach
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00896
Subject(s) - poly adp ribose polymerase , cytotoxicity , olaparib , polymerase , chemistry , biochemistry , pharmacology , cancer research , in vitro , biology , dna
Poly(ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics with enhanced selectivity and cytotoxicity in BRCA1/2 mutant cancer cells. AZD2461, a congener of FDA approved olaparib, is a potent PARPi with high affinity for PARP-1 and nonsubstrate for P-glycoprotein (P-gp), an attractive characteristic for cancer therapeutics. Analogues of AZD2461 were synthesized and profiled in BRCA1 functional and nonfunctional cell lines, revealing compounds ( 2 , 3 , and 5 ) of low cytotoxicity and excellent PARP-1 affinities (∼4-8 nM). In comparison to AZD2461, these agents were found to be less stimulating of P-gp, suggesting that these compounds may be excellent candidates for neurological applications where blood brain barrier penetrance is sought.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom