Solar Photocatalytic Degradation of Trace Organic Pollutants in Water by Bi(0)-Doped Bismuth Oxyhalide Thin Films
Author(s) -
Anirban Dandapat,
Inna Horovitz,
Hani Gnayem,
Yoel Sasson,
Dror Avisar,
Thomas Luxbacher,
Hadas Mamane
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00759
Subject(s) - bismuth , photocatalysis , tantalate , adsorption , doping , materials science , rhodamine b , inorganic chemistry , chemistry , environmental chemistry , nuclear chemistry , chemical engineering , catalysis , organic chemistry , metallurgy , optoelectronics , dielectric , engineering , ferroelectricity
Herein, we demonstrate the fabrication of Bi(0)-doped bismuth oxyhalide solid solution films for the removal of trace organic pollutants (TrOPs) in water. With the advantage of a viscous AlOOH sol, very high loadings (75 wt %) of bismuth oxyhalides were embedded within the thin films and calcined at 500 °C to develop porous alumina composite coatings. Various concentrations of Bi(0) doping were tested for their photocatalytic activity. Seven TrOPs including iopromide (IPRM), iohexol (IHX), iopamidol (IPMD), sulfamethoxazole (SMX), carbamazepine, venlafaxine, and bezafibrate (BZF) were selected for this study based on their occurrence and detection in effluents and surface waters worldwide. In all tests, with the exception of IPRM, 3% Bi(0)-doped BiOCl 0.875 Br 0.125 showed highest activity, which can be attributed to its unique, highly organized, and compact morphology besides its well-matched energy band positions. Although IPMD, IHX, IPRM, and SMX are susceptible to photolysis, still the photocatalytic activity significantly augmented the removal of all tested compounds. In addition, analysis of the surface charge excluded electrostatic interactions and confirmed the ion-exchange adsorption mechanism for the high degradation rate of BZF in the presence of bismuth oxyhalides.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom