z-logo
open-access-imgOpen Access
Chemically Specific Multiscale Modeling of the Shear-Induced Exfoliation of Clay–Polymer Nanocomposites
Author(s) -
James L. Suter,
Peter V. Coveney
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00542
Subject(s) - exfoliation joint , polymer clay , materials science , nanocomposite , shear (geology) , composite material , polymer , polymer nanocomposite , nanotechnology , graphene
We recently showed, using chemically specific modeling and simulation, how the process of intercalation of polymers within clay sheets occurs, transforming the large-scale materials properties by a specific set of spatial and temporal processes that can lead to exfoliation. Here, we use the same hierarchal multiscale modeling scheme to understand the processes that occur during the shear-induced processing of clay-polymer nanocomposites. For both hydrophobic polymers (polyethylene) and hydrophilic polymers (poly(ethylene glycol)), we used free-energy methods to identify the lowest-free-energy separation of the clay sheets; the polymer molecules spontaneously intercalate into the clay interlayer from the surrounding polymer melt. We apply shear forces to investigate exfoliation and find that while exfoliation is promoted by shearing, it is the surfactant molecules that play the dominant role in resisting it.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom