z-logo
open-access-imgOpen Access
Prediction of Compound Profiling Matrices Using Machine Learning
Author(s) -
Raquel Rodríguez-Pérez,
Tomoyuki Miyao,
Swarit Jasial,
Martin Vogt,
Jürgen Bajorath
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00462
Subject(s) - random forest , profiling (computer programming) , machine learning , artificial intelligence , computer science , support vector machine , deep learning , operating system
Screening of compound libraries against panels of targets yields profiling matrices. Such matrices typically contain structurally diverse screening compounds, large numbers of inactives, and small numbers of hits per assay. As such, they represent interesting and challenging test cases for computational screening and activity predictions. In this work, modeling of large compound profiling matrices was attempted that were extracted from publicly available screening data. Different machine learning methods including deep learning were compared and different prediction strategies explored. Prediction accuracy varied for assays with different numbers of active compounds, and alternative machine learning approaches often produced comparable results. Deep learning did not further increase the prediction accuracy of standard methods such as random forests or support vector machines. Target-based random forest models were prioritized and yielded successful predictions of active compounds for many assays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom