Characterization of Pseudo-Lignin from Steam Exploded Birch
Author(s) -
Ida Aarum,
Hanne Devle,
Dag Ekeberg,
Svein Jarle Horn,
Yngve Stenstrøm
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00381
Subject(s) - lignin , steam explosion , lignocellulosic biomass , pyrolysis , biomass (ecology) , chemistry , humin , raw material , acetic acid , pulp and paper industry , organic chemistry , pyrolysis–gas chromatography–mass spectrometry , cellulose , chemical engineering , humic acid , engineering , geology , fertilizer , oceanography
There is a growing interest in a more wholesome utilization of biomass as the need for greener chemistry and non-mineral oil-based products increases. Lignin is the largest renewable resource for aromatic chemicals, which is found in all types of lignocellulosic biomass. Steam-explosion of lignocellulosic biomass is a useful pretreatment technique to make the polymeric material more available for processing. However, this heat-based pretreatment is known to result in the formation of pseudo-lignin, a lignin-like polymer made from carbohydrate degradation products. In this work, we have analyzed steam-exploded birch with a varying severity factor (3.1-5.0) by pyrolysis-gas chromatography-mass spectrometry, 2D-NMR, and Fourier transform infrared spectroscopy. The main results reveal a consumption of acetic acid at higher temperatures, with the increase of furan components in the pyrolyzate. The IR and NMR spectral data support these results, and there is a reason to believe that the conditions for humin formation are accomplished under steam explosion. Pseudo-lignin seems to be a humin-like compound.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom