z-logo
open-access-imgOpen Access
Superhydrophobic Melamine Sponge Coated with Striped Polydimethylsiloxane by Thiol–Ene Click Reaction for Efficient Oil/Water Separation
Author(s) -
Jinwen Peng,
Junjie Deng,
Yiteng Quan,
Chuanbai Yu,
Hai Wang,
Yongyang Gong,
Yuanli Liu,
Weixing Deng
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00373
Subject(s) - polydimethylsiloxane , melamine , materials science , sponge , chemical engineering , silicone , melamine resin , microstructure , click chemistry , coating , nanotechnology , composite material , polymer chemistry , botany , engineering , biology
Superhydrophobic and oleophilic sponges have been demonstrated as promising candidates for oil/water separation. However, there are still challenges in large-scale fabrication of superhydrophobic sponges with low cost and feasible method for industrial applications. Herein, we report a superhydrophobic and oleophilic melamine sponge functionalized by a uniform polydimethylsiloxane (PDMS) film that can be easily coated onto the sponge skeleton through UV-assisted thiol-ene click reactions. The PDMS films are characterized by a hierarchically striped microstructure with an average distance less than 2 μm. Because of the striped microstructure and the hydrophobic property of silicone, a high contact angle of 156.2° was achieved. Importantly, the interconnected open-cell structure of the melamine sponge was preserved by adapting the thickness of the PDMS film. The PDMS-coated melamine sponge exhibited a desirable absorption capacity of 103-179 times its own weight with oils and organic solvents. The excellent mechanical properties of melamine and the flexibility of PDMS enable the PDMS-coated melamine sponges to be squeezed repeatedly without collapsing. This study offers a robust and effective approach in large-scale preparation of a superhydrophobic sponge for large-scale oil spill containment and environmental remediation by the inexpensive commercial polymethylvinylsilicone and facile dip-coating/UV-curing method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom