Combining Similarity Searching and Network Analysis for the Identification of Active Compounds
Author(s) -
Ryo Kunimoto,
Jürgen Bajorath
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00344
Subject(s) - intuition , chemical similarity , similarity (geometry) , identification (biology) , computer science , data mining , nearest neighbor search , context (archaeology) , selection (genetic algorithm) , artificial intelligence , machine learning , information retrieval , structural similarity , biology , paleontology , botany , image (mathematics) , philosophy , epistemology
A variety of computational screening methods generate similarity-based compound rankings for hit identification. However, these rankings are difficult to interpret. It is essentially impossible to determine where novel active compounds might be found in database rankings. Thus, compound selection largely depends on intuition and guesswork. Herein, we show that molecular networks can substantially aid in the analysis of similarity-based compound rankings. A series of networks generated for rankings provides visual access to search results and adds chemical neighborhood and context information for reference compounds that are not available in rankings. Network structure is shown to serve as a diagnostic criterion for the likelihood to successfully select active compounds from rankings. In addition, comparison of different networks makes it possible to prioritize alternative similarity measures for search calculations and optimize the enrichment of active compounds in rankings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom