Indolyl-Pyridinyl-Propenone-Induced Methuosis through the Inhibition of PIKFYVE
Author(s) -
Hyelim Cho,
Erin Geno,
Maude Patoor,
Adam J. Reid,
Rick McDonald,
Marc Hild,
Jeremy L. Jenkins
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00202
Subject(s) - vacuolization , vacuole , chemistry , mechanism (biology) , cytoplasm , biochemistry , microbiology and biotechnology , stereochemistry , biology , philosophy , epistemology , endocrinology
Methuosis is a form of nonapoptotic cell death characterized by the accumulation of macropinosome-derived vacuoles. Herein, we identify PIKFYVE, a class III phosphoinositide (PI) kinase, as the protein target responsible for the methuosis-inducing activity of indolyl-pyridinyl-propenones (3-(5-methoxy-2-methyl-1 H -indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one). We further characterize the effects of chemical substitutions at the 2- and 5-indolyl positions on cytoplasmic vacuolization and PIKFYVE binding and inhibitory activity. Our study provides a better understanding of the mechanism of methuosis-inducing indolyl-pyridinyl-propenones.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom