Magnetic Resonance Imaging as a Novel Method for Elucidating Sediment Burrow Structures and Functions
Author(s) -
Ayato Kohzu,
Hidehiro Watanabe,
Akio Imai,
Nobuhiro Takaya,
Shingo Miura,
Koichi Shimotori,
Kazuhiro Komatsu
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00192
Subject(s) - burrow , sediment , benthic zone , geology , oceanography , geomorphology , paleontology
Burrow structures produced by various benthic animals in sediments are important components of aquatic ecosystems, allowing the circulation of interstitial water via ingress of fresh bottom water into the burrows upon feeding and intraburrow migration. Although X-ray computed tomography has been used to visualize burrow structures, it could not reveal the structures in the soft mud in Lake Kasumigaura, where evaluation of the water-circulation effect of burrows is an important issue. Here, we describe the first attempt to use magnetic resonance (MR) imaging (MRI) to visualize intact burrow structures in the soft mud sediment cores collected from a eutrophic lake. Our MRI application clarified the dynamic distribution of burrows inhabited by chironomids in the soft mud that previous studies could not visualize. By examining the relationships between the degree of chloride ion depletion in deeper layers and the burrow density calculated from the MR images, we were able to consistently explain the water-circulation effect of burrows, suggesting the higher reliability of burrow density calculated from MR images. In addition, we were able to evaluate the activity of burrows, which is difficult to achieve in sediment core experiments. We observed a smaller water-circulation effect of burrows on ammonium ions than on chloride ions, suggesting the enhancement of ammonium production or release in burrow-rich sediments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom