Interstitial Voids and Resultant Density of Liquid Water: A First-Principles Molecular Dynamics Study
Author(s) -
Sohag Biswas,
Debashree Chakraborty,
Bhabani S. Mallik
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01996
Subject(s) - van der waals force , molecular dynamics , molecule , density functional theory , chemical physics , hydrogen bond , chemistry , liquid water , range (aeronautics) , population , computational chemistry , materials science , thermodynamics , physics , demography , organic chemistry , sociology , composite material
Many anomalous properties of water can be explained on the basis of the coexistence of more than one density states: high-density water (HDW) and low-density water (LDW). We investigated these two phases of water molecules through first-principles molecular dynamics simulations using density functional theory (DFT) in conjunction with various van der Waals-corrected exchange and correlation functionals. Different density regions were found to exist due to the difference in short-range and long-range forces present in DFT potentials. These density regions were identified and analyzed on the basis of the distribution of molecules and voids present. We defined a local structure index to distinguish and find the probability of occurrence of these different states. HDW and LDW arise due to the presence of "interstitial water" molecules in between the first and second coordination shells. The population of interstitial water molecules is found to affect the overall dynamics of the system as they change the hydrogen bond pattern.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom