Topological Insulator in Two-Dimensional SiGe Induced by Biaxial Tensile Strain
Author(s) -
Tamiru Teshome,
Ayan Datta
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01957
Subject(s) - tensile strain , materials science , topological insulator , ultimate tensile strength , strain (injury) , insulator (electricity) , condensed matter physics , composite material , topology (electrical circuits) , physics , mathematics , combinatorics , medicine
Strain-engineered two-dimensional (2D) SiGe is predicted to be a topological insulator (TI) based on first-principle calculations. The dynamical and thermal stabilities were ascertained through phonon spectra and ab initio molecular dynamics simulations. 2D SiGe remains dynamically stable under tensile strains of 4 and 6%. A band inversion was observed at the Γ-point with a band gap of 25 meV for 6% strain due to spin-orbit coupling interactions. Nontrivial of the TI phase was determined by its topological invariant (υ = 1). For SiGe nanoribbon with edge states, the valence band and conduction band cross at the Γ-point to create a topologically protected Dirac cone inside the bulk gap. We found that hexagonal boron nitride (h-BN) with high dielectric constant and band gap can be a very stable support to experimentally fabricate 2D SiGe as the h-BN layer does not alter its nontrivial topological character. Unlike other heavy-metal-based 2D systems, because SiGe has a sufficiently large gap, it can be utilized for spintronics and quantum spin Hall-based applications under ambient condition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom