Chalcones and Five-Membered Heterocyclic Isosteres Bind to Alpha Synuclein Fibrils in Vitro
Author(s) -
ChiaJu Hsieh,
Kuiying Xu,
Iljung Lee,
Thomas J. A. Graham,
Zhude Tu,
Dhruva Dhavale,
Paul T. Kotzbauer,
Robert H. Mach
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01897
Subject(s) - fibril , chemistry , moiety , chalcone , isoxazole , selectivity , stereochemistry , in vitro , tropone , pyrazole , biochemistry , catalysis
A series of chalcone and heterocyclic isosteres, in which the enone moiety was replaced with an isoxazole and pyrazole ring system, was synthesized and their affinities for alpha synuclein (Asyn), amyloid beta (Aβ), and tau fibrils were measured in vitro. The compounds were found to have a modest affinity and selectivity for Asyn versus Aβ fibrils and low affinity for tau fibrils. Insertion of a double bond to increase the extendable surface area resulted in an increase in affinity and improvement in selectivity for Asyn versus Aβ and tau fibrils. The results of this study indicate that compound 11 is a secondary lead compound for structure-activity relationship studies aimed at identifying a suitable compound for positron emission tomography-imaging studies of insoluble Asyn aggregates in Parkinson's disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom