Excited-State Proton Transfer of Phenol Cyanine Picolinium Photoacid
Author(s) -
Luís Pinto da Silva,
Ori Green,
Oren Gajst,
Ron Simkovitch,
Doron Shabat,
Joaquim C. G. Esteves da Silva,
Dan Huppert
Publication year - 2018
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01888
Subject(s) - cyanine , chemistry , photochemistry , excited state , isomerization , protonation , fluorescence , photoisomerization , aqueous solution , reaction rate constant , kinetics , organic chemistry , catalysis , ion , physics , quantum mechanics , nuclear physics
Steady-state and time-resolved fluorescence techniques as well as quantum-mechanical calculations were used to study the photophysics and photochemistry of a newly synthesized photoacid-the phenol cyanine picolinium salt. We found that the nonradiative rate constant k nr of the excited protonated form of the photoacid is larger than that of the excited-state proton transfer (ESPT) to the solvent, k ESPT . We estimate that the quantum efficiency of the ESPT process is about 0.16. The nonradiative process is explained by a partial trans-cis isomerization reaction, which leads to the formation of a "dark" excited state that can cross to the ground state by nonadiabatic coupling. Moreover, the ESPT process is coupled to the photo-isomerization reaction, as this latter reaction enhances the photoacidity of the studied compound, as a result of photoinduced charge transfer. To prevent trans-cis isomerization of the cyanine bridge, we conducted experiments of PCyP adsorbed on cellulose in the presence of water. We found that the steady-state fluorescence intensity increased by about a factor of 50 and the lifetime of the ROH band increased by the same factor. The fluorescence intensity of the RO - band with respect to that of the ROH band was the same as in aqueous solution. This explains why inhibiting the photo-isomerization reaction by adsorbing the PCyP on cellulose does not lead to a higher ESPT rate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom