Plasma Synthesis of Graphene from Mango Peel
Author(s) -
Javishk Shah,
Janneth López-Mercado,
M. Carreón-Garcidueñas,
Armando López-Miranda,
Maria L. Carreon
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01825
Subject(s) - graphene , plasma , etching (microfabrication) , sugar , chemistry , plasma etching , biomass (ecology) , materials science , chemical engineering , nanotechnology , layer (electronics) , food science , agronomy , physics , engineering , quantum mechanics , biology
The excess of mango peels is considered manufacturing waste in the sugar and juice industry. There is an increasing interest in looking for alternative ways to employ this waste to address this overload. Here, we show the efficient use of mango peels as a noncost carbon source for the synthesis of graphene. We demonstrate for the first time the synthesis of graphene on Cu substrates from mango peels, a biomass rich in pectin. It is observed that plasma presence is essential for the growth of graphene from mango peels. At 15 and 30 min of plasma exposure, we observed the presence of multilayered graphene, at longer plasma exposure, i.e., 60 min, there is the formation of monolayer graphene, attributed to the etching of multiple layers formed at short times due to long plasma exposure time. When employing this technique, precautions must be taken due to the etching effect of plasma, such as reducing either the plasma exposure time or the plasma power. Finally, we present a graphene growth pathway under plasma environment on the basis of our experimental observations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom