Collagen–Hydroxypropyl Methylcellulose Membranes for Corneal Regeneration
Author(s) -
Yuyu Long,
Xuan Zhao,
Sa Liu,
Min Chen,
Bingqian Liu,
Jian Ge,
YongGuang Jia,
Li Ren
Publication year - 2018
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01511
Subject(s) - membrane , biocompatibility , regeneration (biology) , descemet's membrane , cornea , chemistry , stromal cell , adhesion , staining , materials science , ophthalmology , microbiology and biotechnology , pathology , medicine , biochemistry , biology , organic chemistry
To improve intraocular transparency of collagen matrices, hydroxypropyl methylcellulose (HPMC) was introduced for the first time into cross-linked collagen to form collagen-HPMC composite membranes. Light transmittance and refractive indices of the membranes are enhanced by incorporation of HPMC in comparison to the control of cross-linked collagen membranes. Maximum light transmittance of the collagen-HPMC membrane was up to 92%. In addition, their permeability of nutrients such as glucose, tryptophan, and NaCl was superior or comparable to that of human corneas. In vitro results demonstrated that the collagen-HPMC membrane supported adhesion and proliferation of human corneal epithelial cells (HCECs), showing good cytocompatibility to HCECs. The corneas maintained a smooth surface and clear stroma postoperatively after 7 months of implantation of collagen-HPMC membranes into the corneas of rabbits. The good intraocular biocompatibility was verified by maintaining a high optical clarity for over 6 months after transplantation. Hematoxylin and eosin staining results showed the growth of stromal keratocytes into the collagen-HPMC implants, indicating the ability of the collagen-HPMC membrane to induce corneal cell regeneration. Taken together, the collagen-HPMC membrane might be a promising candidate for use in corneal repair and regeneration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom