Anisotropic Nanoparticles Contributing to Shear-Thickening Behavior of Fumed Silica Suspensions
Author(s) -
Mahla Zabet,
Kevin Trinh,
Hossein Toghiani,
Thomas E. Lacy,
Charles U. Pittman,
Santanu Kundu
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01484
Subject(s) - fumed silica , dilatant , materials science , rheology , composite material , chemical engineering , suspension (topology) , flocculation , particle (ecology) , shear rate , nanoparticle , hydrophobic silica , shear (geology) , nanotechnology , oceanography , mathematics , homotopy , pure mathematics , engineering , geology
Rheological characteristics of a concentrated suspension can be tuned using anisotropic particles having various shapes and sizes. Here, the role of anisotropic nanoparticles, such as surface-functionalized multiwall carbon nanotubes (MWNTs) and graphene oxide nanoplatelets (GONPs), on the rheological behavior of fumed silica suspensions in poly(ethylene glycol) (PEG) is investigated. In these mixed-particle suspensions, the concentrations of MWNTs and GONPs are much lower than the fumed silica concentration. The suspensions are stable, and hydrogen-bonded PEG solvation layers around the particles inhibit their flocculation. Fumed silica suspensions over the concentration range considered here display shear-thickening behavior. However, for a larger concentration of MWNTs and with increasing aspect ratios, the shear-thickening behavior diminishes. In contrast, a distinct shear-thickening response has been observed for the GONP-containing suspensions for similar mass fractions (MFs) of MWNTs. For these suspensions, shear thickening is achieved at a lower solid MFs compared to the suspensions consisting of only fumed silica. A significant weight reduction of shear-thickening fluids that can be achieved by this approach is beneficial for many applications. Our results provide guiding principles for controlling the rheological behavior of mixed-particle systems relevant in many fields.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom