z-logo
open-access-imgOpen Access
Simultaneous Hardening/Ductilizing Effects of Cryogenic Nanohybridization of Biopolyamides with Montmorillonites
Author(s) -
Mohammad Asif Ali,
Nupur Tandon,
Tatsuo Kaneko
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01446
Subject(s) - materials science , itaconic acid , monomer , polymer , elongation , polymer chemistry , hardening (computing) , strain hardening exponent , chemical engineering , side chain , salt (chemistry) , sodium salt , chemistry , organic chemistry , composite material , inorganic chemistry , layer (electronics) , engineering , ultimate tensile strength
We prepared organic/inorganic bionanohybrid resins of polyamides containing pyrrolidone in the backbone derived from the salt monomers of an itaconic acid biomolecule with various nanofillers, montmorillonites (MMTs), by cryogenic nanohybridizations. The nanohybridizations with MMTs hardened and strengthened the polypyrrolidone bioplastic resins owing to a simple reinforcement of hard filler incorporation. On the other hand, the elongation at break of the resins is unexpectedly increased by the nanohybridization with MMT sodium salt (NaMMT) to enhance the strain energy density, which differed from those of the nanohybrids with other organically modified MMTs. From spectroscopic analyses, we discuss the mechanism of such ductilization effects by NaMMT, the catalytic effect of NaMMT on partially opening the pyrrolidone ring to make polymer backbones flexible and to form carboxyl side chains that are strongly interactive with NaMMT fillers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom