Antibiotic Resistance: Current Perspectives
Author(s) -
Anushya Petchiappan,
Dipankar Chatterji
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01368
Subject(s) - antibiotics , biology , antibiotic resistance , drug resistance , drug discovery , antimicrobial , biofilm , pathogenic bacteria , riboswitch , drug , bacteria , mechanism (biology) , computational biology , microbiology and biotechnology , pharmacology , rna , bioinformatics , genetics , non coding rna , gene , philosophy , epistemology
Antibiotic resistance is one of the most serious challenges that the world is currently facing. The number of people succumbing to drug-resistant infections is increasing every day, but the rate of drug discovery has failed to match the requisite demands. Most of the currently known antibiotics target the three essential pathways of central dogma. However, bacteria have evolved multiple mechanisms to survive these antibiotics. Consequently, there is an urgent necessity to target auxiliary pathways for the discovery of new drugs. Metabolism-related and stress-associated pathways are ideal in this regard. The stringent response pathway regulated by the signaling nucleotides (p)ppGpp is an attractive target as inhibition of the pathway would in turn decrease the persistence and long-term survival of pathogenic bacteria. In this perspective, we focus on the recent design of small molecule analogues of (p)ppGpp that have yielded promising results in terms of growth and biofilm inhibition. Additionally, we discuss how targeting small RNAs and riboswitches, as well as antimicrobial peptides, would help combat drug-resistant infections in the near future.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom