z-logo
open-access-imgOpen Access
Surface Modification of Perfect and Hydroxylated TiO2 Rutile (110) and Anatase (101) with Chromium Oxide Nanoclusters
Author(s) -
Marco Fronzi,
Michael Nolan
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01118
Subject(s) - chromia , nanoclusters , anatase , rutile , materials science , density functional theory , vacancy defect , band gap , chromium , oxide , adsorption , photocatalysis , photochemistry , nanotechnology , chemistry , computational chemistry , metallurgy , crystallography , catalysis , biochemistry , organic chemistry , optoelectronics
We use first-principles density functional theory calculations to analyze the effect of chromia nanocluster modification on TiO 2 rutile (110) and anatase (101) surfaces, in which both dry/perfect and wet/hydroxylated TiO 2 surfaces are considered. We show that the adsorption of chromia nanoclusters on both surfaces is favorable and results in a reduction of the energy gap due to a valence band upshift. A simple model of the photoexcited state confirms this red shift and shows that photoexcited electrons and holes will localize on the chromia nanocluster. The oxidation states of the cations show that Ti 3+ , Cr 4+ , and Cr 2+ (with no Cr 6+ ) can be present. To probe potential reactivity, the energy of oxygen vacancy formation is shown to be significantly reduced compared to that of pure TiO 2 and chromia. Finally, we show that inclusion of water on the TiO 2 surface, to begin inclusion of environment effects, has no notable effect on the energy gap or oxygen vacancy formation. These results help us to understand earlier experimental work on chromia-modified anatase TiO 2 and demonstrate that chromia-modified TiO 2 presents an interesting composite system for photocatalysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom