Design of Optimally Stable Molecular Coatings for Fe-Based Nanoparticles in Aqueous Environments
Author(s) -
Sebastian Zuluaga,
Priyanka Manchanda,
Yuyang Zhang,
Sokrates T. Pantelides
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00762
Subject(s) - cementite , nanoparticle , materials science , aqueous solution , magnetite , molecule , nanotechnology , molecular dynamics , coating , magnetic nanoparticles , chemical physics , chemical engineering , chemistry , computational chemistry , metallurgy , organic chemistry , microstructure , austenite , engineering
Magnetic nanoparticles are widely used in biomedical and oil-well applications in aqueous, often harsh environments. The pursuit for high-saturation magnetization together with high stability of the molecular coating that prevents agglomeration and oxidation remains an active research area. Here, we report a detailed analysis of the criteria for the stability of molecular coatings in aqueous environments along with extensive first-principles calculations for magnetite, which has been widely used, and cementite, a promising emerging candidate. A key result is that the simple binding energies of molecules cannot be used as a definitive indicator of relative stability in a liquid environment. Instead, we find that H + ions and water molecules facilitate the desorption of molecules from the surface. We further find that, because of differences in the geometry of crystal structures, molecules generally form stronger bonds on cementite surfaces than they do on magnetite surfaces. The net result is that molecular coatings of cementite nanoparticles are more stable. This feature, together with the better magnetic properties, makes cementite nanoparticles a promising candidate for biomedical and oil-well applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom