z-logo
open-access-imgOpen Access
Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO2 Adsorption
Author(s) -
Sandeep K. Gupta,
Dhananjayan Kaleeswaran,
Shyamapada Nandi,
Ramanathan Vaidhyanathan,
Ramaswamy Murugavel
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00515
Subject(s) - adsorption , picric acid , isopropyl , chemistry , pyrene , covalent bond , toluene , selectivity , polymer , isopropyl alcohol , polar effect , polymer chemistry , organic chemistry , catalysis
An azo-linked covalent organic polymer, Py-azo-COP, was synthesized by employing a highly blue-fluorescent pyrene derivative that is multiply substituted with bulky isopropyl groups. Py-azo-COP was investigated for its sensing and gas adsorption properties. Py-azo-COP shows selective sensing toward the electron-deficient polynitroaromatic compound picric acid among the many other competing analogs that were investigated. Apart from its chemosensing ability, Py-azo-COP (surface area 700 m 2 g -1 ) exhibits moderate selectivity toward adsorption of CO 2 and stores up to 8.5 wt % of CO 2 at 1 bar and 18.2 wt % at 15.5 bar at 273 K, although this is limited due to the electron-rich -N=N- linkages being flanked by isopropyl groups. Furthermore, the presence of a large number of isopropyl groups imparts hydrophobicity to Py-azo-COP, as confirmed by the increased adsorption of toluene compared to that of water in the pores of the COP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom