Microfibrillar Polysaccharide-Derived Biochars as Sodium Benzoate Adsorbents
Author(s) -
Dagang Liu,
Yi Zhu,
Zehui Li,
Muye Xiao,
Chenyu Jiang,
Muzi Chen,
Yunuo Chen
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00404
Subject(s) - pyrolysis , adsorption , chemical engineering , cellulose , sorption , chitosan , polysaccharide , aqueous solution , chemistry , materials science , organic chemistry , engineering
Microfibrillar biochars of chitin (CTF), chitosan (CSF), and cellulose (CLF) were fabricated via green homogenization and a pyrolysis process, and were subsequently explored as adsorbents for removing over-released sodium benzoate (SB) in aqueous systems. The structure, composition, morphology, and adsorption behavior of the as-fabricated biochars were characterized. Results suggest that all biochars, with a microscaled fibrillar structure and foam-like network morphology, underwent severe chemical transition during the pyrolysis process, thereby causing an enhancement of the Brunauer-Emmett-Teller surface area, pore volume, and aromatic and carbonaceous composition. Consequently, N-doped porous CTF/CSF microfibrillar biochars displayed a distinguished capture capacity toward SB compared to that of their fibrillar precursors. Tailoring the chemical composition, porous structure, and sorption mechanism constitutes a possible strategy to achieve adequate structural effects of polysaccharide microfibrillar chars for potential application in environmental treatment or bioenergy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom