z-logo
open-access-imgOpen Access
Path from Reaction Control to Equilibrium Constraint for Dissolution Reactions
Author(s) -
Frank K. Crundwell
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00344
Subject(s) - dissolution , albite , chemistry , thermodynamic equilibrium , reaction rate , thermodynamics , chemical equilibrium , chemical reaction , brusselator , mineralogy , chemical physics , materials science , physics , catalysis , biochemistry , quartz , nonlinear system , quantum mechanics , composite material
Although dissolution reactions are widespread and commonplace, our understanding of the factors affecting the rate of dissolution is incomplete and consequently the kinetics of these reactions appear complicated. The focus in this work is on the behavior of the rate as conditions approach equilibrium. The reverse reaction is often treated in terms of chemical affinity, or saturation state. However, the implementation of the chemical affinity model fails, requiring arbitrary empirical adjustments. In this study, a mechanism of dissolution is proposed that describes both the fractional orders of reaction with respect to H + and OH - and correctly describes the approach to equilibrium. The mechanism is based on the separate removal of anions and cations from the surface, which are coupled to one another through their contribution to and dependence on the potential difference across the interface. Charge on the surface, and hence potential difference across the interface, is caused by an excess of ions of one sign and is maintained at this stationary state by the rate of removal of cations and anions from the surface. The proposed model is tested using data for NaCl (halite), CaCO 3 (calcite), ZnS (sphalerite), NaAlSi 3 O 8 (albite), and KAlSi 3 O 8 (K-feldspar). An important feature of the proposed model is the possibility of "partial equilibrium", which explains the difficulties in describing the approach to equilibrium of some minerals. This concept may also explain the difficulties experienced in matching rates of chemical weathering measured in laboratory and field situations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom