Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen
Author(s) -
Shubhmita Bhatnagar,
Sumeet Rajesh Chawla,
Onkar P. Kulkarni,
Venkata Vamsi Krishna Venuganti
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00343
Subject(s) - ovalbumin , antigen , penetration (warfare) , in vivo , antibody titer , materials science , antibody , biomedical engineering , medicine , immunology , titer , biology , microbiology and biotechnology , operations research , engineering
Transcutaneous antigen administration provides an alternative to invasive syringe injections. The objective of this study was to investigate the feasibility of fabrication and antigen delivery using microneedles made from corn protein, zein. Micromolding technique was used to cast cone-shaped zein microneedles (ZMNs). The insertion of ZMNs and the delivery of the model antigen, ovalbumin (OVA), into the skin was confirmed by histological examination and confocal microscopy. In addition, a significantly ( p < 0.05) lower bacterial skin penetration was observed after ZMN application compared with hypodermic syringe application. OVA coated on ZMNs was stable after storage under ambient and refrigerator conditions. Transcutaneous immunization studies showed significantly ( p < 0.001) greater antibody titers (total IgG, IgG1, and IgG2a) after the application of OVA-coated ZMNs and OVA intradermal injection compared with the control group. Taken together, antigen-coated ZMNs can be developed for transcutaneous vaccine delivery.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom