Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction
Author(s) -
Tomoaki Kumeda,
Naoto Otsuka,
Hiroo Tajiri,
Osami Sakata,
Nagahiro Hoshi,
Masashi Nakamura
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00301
Subject(s) - oxygen reduction reaction , electrode , materials science , alloy , reduction (mathematics) , oxygen reduction , oxygen , surface structure , chemical engineering , metallurgy , chemistry , electrochemistry , crystallography , organic chemistry , engineering , geometry , mathematics
The interfacial structure and activity for the oxygen reduction reaction (ORR) were investigated on a PtNi surface alloy on a Pt(111) electrode (PtNi/Pt(111)). The PtNi surface alloy was prepared by thermal annealing of Ni 2+ modified on Pt(111) at 573-803 K. After optimizing the alloying temperature and the amount of added Ni, the ORR current density of PtNi/Pt(111) at 0.9 V (reversible hydrogen electrode) is enhanced 9.5 times compared with that of Pt(111), and the activity is decreased by 24% after 1000 potential cycles. The atomic composition and subsurface structure of PtNi/Pt(111) were determined by in situ infrared reflection-absorption spectroscopy and X-ray diffraction. The surface contains a (111)-oriented Pt-skin and the subsurface of the 2nd-5th layers of the PtNi alloy contains less than 11% Ni atoms. The layer spacings of the surface alloy layers are slightly expanded compared with those of bare Pt(111). Homogeneous alloying with a small amount of Ni in the subsurface layers achieves the high ORR activity and durability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom