z-logo
open-access-imgOpen Access
Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors
Author(s) -
Lingzhi Li,
Jiangfeng Gong,
Chunyan Liu,
Yazhou Tian,
Min Han,
Qianjin Wang,
Xuhao Hong,
Qing-Ping Ding,
Weihua Zhu,
Jianchun Bao
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.6b00535
Subject(s) - nanosheet , supercapacitor , materials science , solid state , nanotechnology , chemical engineering , engineering physics , capacitance , electrode , chemistry , engineering
As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g -1 ) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinyl alcohol-LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm -3 ), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom