Adventitious Water Sorption in a Hydrophilic and a Hydrophobic Ionic Liquid: Analysis and Implications
Author(s) -
Radhika S. Anaredy,
Anthony J. Lucio,
Scott K. Shaw
Publication year - 2016
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.6b00104
Subject(s) - sorption , ionic liquid , chemistry , chemical engineering , hydrophobic effect , ionic bonding , chromatography , organic chemistry , adsorption , engineering , ion , catalysis
The sorption of water in ionic liquids (ILs) is nearly impossible to prevent, and its presence is known to have a significant effect on the resulting mixtures' bulk and interfacial properties. The so-called "saturation" water concentrations have been reported, but water sorption rates and mixing behaviors in ILs are often overlooked as variables that can significantly change the resulting mixtures' physical properties over experimental time frames of several minutes to hours. The purpose of this work is to establish a range of these effects over similar time frames for two model ILs, protic ethylammonium nitrate (EAN) and aprotic butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1114 TFSI), as they are exposed to controlled dry and humid environments. We report the water sorption rates for these liquids (270 ± 30 ppm/min for EAN and 30 ± 3 ppm/min for N1114 TFSI), examine the accuracy and precision associated with common methods for reporting water content, and discuss implications of changing water concentrations on experimental data and results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom