z-logo
open-access-imgOpen Access
Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers
Author(s) -
Papaorn Siribunbandal,
YongHoon Kim,
Tanakorn Osotchan,
Zhigang Zhu,
Rawat Jaisutti
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.2c01419
Subject(s) - naked eye , rgb color model , ammonia , detection limit , artificial intelligence , chemistry , support vector machine , machine learning , materials science , computer science , chromatography , organic chemistry

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom